Fold Helical Proteins by Energy Minimization in Dihedral Space and a Dfire-based Statistical Energy Function

نویسندگان

  • Hongzhi Li
  • Yaoqi Zhou
چکیده

Statistical energy functions are discrete (or stepwise) energy functions that lack van der Waals repulsion. As a result, they are often applied directly to a given structure (native or decoy) without further energy minimization being performed to the structure. However, the full benefit (or hidden defect) of an energy function cannot be revealed without energy minimization. This paper tests a recently developed, all-atom statistical energy function by energy minimization with a fixed secondary helical structure in dihedral space. This is accomplished by combining the statistical energy function based on a distance-scaled finite ideal-gas reference (DFIRE) state with a simple repulsive interaction and an improper torsion energy function. The energy function was used to minimize 2000 random initial structures of 41 small and medium-sized helical proteins in a dihedral space with a fixed helical region. Results indicate that near-native structures for most studied proteins can be obtained by minimization alone. The average minimum root-mean-squared distance (rmsd) from the native structure for all 41 proteins is 4.1 A. The energy function (together with a simple clustering of similar structures) also makes a reasonable selection of near-native structures from minimized structures. The average rmsd value and the average rank for the best structure in the top five is 6.8 A and 2.4, respectively. The accuracy of the structures sampled and the structure selections can be improved significantly with the removal of flexible terminal regions in rmsd calculations and in minimization and with the increase in the number of minimizations. The minimized structures form an excellent decoy set for testing other energy functions because most structures are well-packed with minimum hard-core overlaps with correct hydrophobic/hydrophilic partitioning. They are available online at http://theory.med.buffalo.edu.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The dependence of all-atom statistical potentials on structural training database.

An accurate statistical energy function that is suitable for the prediction of protein structures of all classes should be independent of the structural database used for energy extraction. Here, two high-resolution, low-sequence-identity structural databases of 333 alpha-proteins and 271 beta-proteins were built for examining the database dependence of three all-atom statistical energy functio...

متن کامل

Unbound Protein-Protein Docking Selections by the DFIRE-based Statistical Pair Potential

A newly developed statistical pair potential based on Distance-scaled Finite Ideal-gas REference (DFIRE) state is applied to unbound protein-protein docking structure selections. The performance of the DFIRE energy function is compared to those of the well-established ZDOCK energy scores and RosettaDock energy function using the comprehensive decoy sets generated by ZDOCK and RosettaDock. Despi...

متن کامل

Assessment of Detection and Refinement Strategies for de novo Protein Structures Using Force Field and Statistical Potentials.

De novo predictions of protein structures at high resolution are plagued by the problem of detecting the native conformation from false energy minima. In this work, we provide an assessment of various detection and refinement protocols on a small subset of the second-generation all-atom Rosetta decoy set (Tsai et al. Proteins 2003, 53, 76-87) using two potentials:  the all-atom CHARMM PARAM22 f...

متن کامل

Refining near-native protein-protein docking decoys by local resampling and energy minimization.

How to refine a near-native structure to make it closer to its native conformation is an unsolved problem in protein-structure and protein-protein complex-structure prediction. In this article, we first test several scoring functions for selecting locally resampled near-native protein-protein docking conformations and then propose a computationally efficient protocol for structure refinement vi...

متن کامل

Loop modeling: Sampling, filtering, and scoring

We describe a fast and accurate protocol, LoopBuilder, for the prediction of loop conformations in proteins. The procedure includes extensive sampling of backbone conformations, side chain addition, the use of a statistical potential to select a subset of these conformations, and, finally, an energy minimization and ranking with an all-atom force field. We find that the Direct Tweak algorithm u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bioinformatics and computational biology

دوره 3 5  شماره 

صفحات  -

تاریخ انتشار 2005